Bäckerhefe Saccharomyces cerevisiae ist Mikrobe des Jahres 2022

Wenn zu Jahresbeginn die Sektkorken knallen, ist die Mikrobe des Jahres 2022 beteiligt: Die Bäckerhefe Saccharomyces cerevisiae produziert neben Wein – der Grundlage von #Sekt – und #Bier auch #Kuchen und #Brot. Hefen sind winzige Einzeller und zählen zu den Mikroben, auch wenn sie – anders als Bakterien – einen Zellkern besitzen (Eukaryoten). Diese Verwandtschaft mit Menschen macht sie zu einem idealen Forschungsobjekt. Als kleine »Zellfabriken« stellen sie Medikamente und Rohstoffe in industriellem Maßstab her. Diesen für unseren Genuss und nachhaltige Produktion bedeutenden Mikroorganismus wählte die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) zur #Mikrobe des Jahres 2022.

»Zuckerpilz des Bieres«

»Zuckerpilz des Bieres« bedeutet der lateinische Name Saccharomyces cerevisiae. Die Mikrobe des Jahres 2022 ist ein großer Braumeister, obwohl sie so winzig ist, dass zehn ihrer Zellen gestapelt gerade mal die Dicke von Papier erreichen. Sichtbar wurde die Brauhefe erst mit der Erfindung des Lichtmikroskops (1680) in Form vieler kleiner Teilchen, die das Bier trübe machen. Es dauerte fast 200 weitere Jahre, bis Louis Pasteur lebende Hefezellen als Ursache für die alkoholische #Gärung erkannte.

Natürlicherweise ernähren sich Hefezellen von Zuckerverbindungen aus Blättern und Früchten. Sie bauen Glukose oder Fruktose zu Kohlendioxid-Bläschen (#CO) und dem Alkohol Ethanol ab. Der Alkohol verschafft der Hefe einen Vorteil: Er tötet konkurrierende Mikroorganismen. Hat die Hefe den Zucker vernascht, kann sie den selbst produzierten Ethanol weiter abbauen.

Die Hefefermentation nutzen die Menschen seit Jahrtausenden: Schon die alten Ägypter stellten eine Art Bier her. In früheren Jahrhunderten war dies ein Getränk selbst für Kinder, weil es viel keimärmer war als das häufig verschmutzte Wasser. Auch Wein und Sake beruhen auf der Gärtätigkeit von Hefe. Zur Schaumbildung beim Sekt wird in der zweiten Gärung eine Hefevariante (Saccharomyces bayanus) eingesetzt, die auf drei verschiedene Hefen zurückgeht, darunter die Bäckerhefe. 

Backtriebmittel

Auch im #Kuchenteig produzieren die einzelligen Hefepilze Kohlendioxid-Bläschen: Mehl besteht aus verknüpften Zuckern (Kohlenhydraten), die Saccharoymces cerevisiae zu CO₂ umsetzt. Durch kräftiges Kneten verteilen sich die Hefezellen im Teig; leichte Wärme regt ihren #Stoffwechsel und ihre #Vermehrung an. Die entstehenden Bläschen lassen den Hefeteig locker werden – er geht auf.

Bäckereien, Brauereien, Wein- und Sektkellereien verwenden eine Vielzahl unterschiedlicher Hefestämme und -arten. Im für Brot verwendeten Sauerteig unterstützen Milchsäurebakterien die Hefe. Die genaue Zusammensetzung und ihre Einsatzbedingungen sind häufig gut gehütete Betriebsgeheimnisse.

Biotechnologischer Modellorganismus für #Medikamente und nachhaltige Rohstoffe

Saccharomyces cerevisiae war der erste eukaryotische Organismus mit vollständig sequenziertem Genom. Heute gibt es Stammsammlungen, in denen jedes einzelne der circa 6.300 Hefegene veränderbar ist. Am Modellorganismus Bäckerhefe lässt sich vergleichsweise einfach der grundlegende Aufbau und die Funktion eukaryotischer Zellen untersuchen, denn Hefezellen sind ähnlich aufgebaut wie menschliche Zellen.

Hefezellen dienen auch als zelluläre Fabrik. Davon profitieren beispielsweise Diabetiker seit Jahrzehnten: In das Hefegenom wurde das menschliche Insulin-Gen »eingepflanzt«, sodass dieser winzige Organismus einen Großteil des menschlichen Hormons für die Diabetestherapie produziert. Forscherteams versetzten die Hefe zudem mit Hilfe von Genen aus Pilzen und Bakterien in die Lage, natürliche Zucker aus Holz (Xylose) in Ethanol umzuwandeln. Damit können pflanzliche Abfallstoffe heute als Rohstoff und Energiequelle dienen. Veränderte Hefezellen können auch Bernsteinsäure herstellen, einen Baustein zur industriellen Herstellung von Polyester. Der Malaria-Wirkstoff Artemisinin (2015 mit dem Nobelpreis ausgezeichnet) wird durch eine ausgefeilte »Umleitung« des Hefe-Stoffwechsel produziert. Dieser Prozess diente auch als Ausgangsbasis für die Herstellung des chemisch verwandten Ersatz-Flugzeugkraftstoffs Farnesen. 

Eine wichtige Rolle für die Biotechnologie spielt eine Eigenschaft, die Hefen wie alle Eukaryoten auszeichnet: Sie besitzen membranumschlossene Organellen, die eine räumliche Trennung verschiedener biochemischer Prozesse erlauben. Damit lassen sich beispielsweise giftige Zwischenstufen innerhalb der Zelle abtrennen. So ist es Forschenden kürzlich gelungen, Enzyme für die Vorstufe von Nylon in bläschenartige Vesikel zu »verpacken«. Das zeigt beispielhaft, wie die Arbeitsteilung in der Zelle durch neue Reaktionsräume optimiert werden kann. Saccharomyces cerevisiae wird bei der gesellschaftlichen Transformation zu nachhaltigeren Wirtschaftsformen eine wichtige Rolle spielen.

Anja Störiko (VAAM)

Baker's yeast Saccharomyces cerevisiae is Microbe of the Year 2022

When the champagne corks pop at the beginning of the year, the Microbe of the Year 2022 is involved: Baker's yeast Saccharomyces cerevisiae produces wine—the basis of sparkling wine—and beer as well as cakes and bread. Yeasts are tiny single-celled organisms and count as microbes, even though—unlike bacteria - they have a cell nucleus (eukaryote). This similarity to humans makes them an ideal research object. As small “cell factories”, they produce medicines and raw materials on an industrial scale. This microorganism, important for our tasty delight and sustainable production, was chosen by the Association for General and Applied Microbiology (VAAM) as Microbe of the Year 2022.

“Sugar fungus of beer” is the translation of the Latin name Saccharomyces cerevisiae. The Microbe of the Year 2022 is a great brewer, although it is so tiny that ten of its cells stacked together barely reach the thickness of paper. The brewing yeast only became visible with the invention of the light microscope (1680) in the form of many small particles that make the beer cloudy. It took almost 200 more years until Louis Pasteur recognised living yeast cells as the cause of alcoholic fermentation.

Naturally, yeast cells feed on sugar compounds from leaves and fruits. They break down glucose or fructose into carbon dioxide bubbles (CO₂) and the alcohol ethanol. The alcohol gives the yeast an advantage: it kills competing microorganisms. Once the yeast has consumed the sugar, it can continue to break down the ethanol it has produced itself.

Mankind has been using yeast fermentation for thousands of years: Already the ancient Egyptians made a kind of beer. In earlier centuries, this was a drink even for children because it was much lower in germs than the often polluted water. Wine and sake are also based on the fermentation activity of yeast. For the formation of bubbles in sparkling wine, in the second fermentation a yeast variant (Saccharomyces bayanus) is used, which goes back to three different yeasts, including baker's yeast. 

Baking agent

The unicellular yeast also produces carbon dioxide bubbles in cake dough: Flour consists of linked sugars (carbohydrates), which Saccharoymces cerevisiae converts to CO₂. By kneading vigorously, the yeast cells disperse in the dough; warmth stimulates their metabolism and multiplication. The resulting bubbles make the yeast dough rise.

Bakeries, breweries, wine and sparkling wine cellars use a variety of different yeast strains and species. In the sourdough used for bread, lactic acid bacteria support the yeast. The exact yeast composition and their conditions of use are often well-kept trade secrets.

Biotechnological model organism for medicines and sustainable raw materials

Saccharomyces cerevisiae was the first eukaryotic organism with a completely sequenced genome. Today, there are strain collections in which every single one of the approximately 6,300 yeast genes can be modified. Using baker's yeast as a model organism is helpful for studying the basic structure and function of eukaryotic cells, because yeast cells have a similar structure to human cells.

Yeast cells also serve as a cellular factory. Diabetics, for example, have benefited from this for decades: The human insulin gene has been "implanted" into the yeast genome, so that this tiny organism produces a large part of the human hormone for diabetes therapy. With the help of genes from fungi and bacteria, research teams also enabled the yeast to convert natural sugars from wood (xylose) into ethanol. This means that plant waste can now serve as a raw material and energy source. Modified yeast cells can also produce succinic acid, a building block for the industrial production of polyester. The antimalarial agent Artmisinin (awarded the Nobel Prize in 2015) is produced by a sophisticated “redirection” of the yeast metabolism. This process also served as the starting point for the production of the chemically related substitute aircraft fuel Farnesene.

An important role for biotechnology is played by a property that yeasts have in common with all eukaryotes: They possess membrane-enclosed organelles that allow spatial separation of various biochemical processes. This makes it possible, for example, to separate toxic intermediates within the cell. Researchers recently succeeded in "packaging" enzymes for the precursor of nylon in vesicles. This is an example of how the division of labour in the cell can be optimised through new reaction spaces. Saccharomyces cerevisiae will play an important role in the societal transformation to more sustainable forms of economy. 

Anja Störiko (VAAM)